4.6 Article

Changes in mumps virus gene sequence associated with variability in neurovirulent phenotype

Journal

JOURNAL OF VIROLOGY
Volume 77, Issue 21, Pages 11616-11624

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JVI.77.21.11616-11624.2003

Keywords

-

Categories

Ask authors/readers for more resources

Mumps virus is highly neurotropic and, prior to widespread vaccination programs, was the major cause of viral meningitis in the United States. Nonetheless, the genetic basis of mumps virus neurotropism and neurovirulence was until recently not understood, largely due to the lack of an animal model. Here, nonneurovirulent (Jeryl Lynn vaccine) and highly neurovirulent (88-1961 wild type) mumps virus strains were passaged in human neural cells or in chicken fibroblast cells with the goal of neuroadapting or neuroattenuating the viruses, respectively. When tested in our rat neurovirulence assay against the respective parental strains, a Jeryl Lynn virus variant with an enhanced propensity for replication (neurotropism) and damage (neurovirulence) in the brain and an 88-1961 wild-type virus variant with decreased neurotropic and neurovirulent properties were recovered. To determine the molecular basis for the observed differences in neurovirulence and neuroattenuation, the complete genomes of the parental strains and their variants were fully sequenced. A comparison at the nucleotide level associated three amino acid changes with enhanced neurovirulence of the neuroadapted vaccine strain: one each in the nucleoprotein, matrix protein, and polymerase and three amino acid changes with reduced neurovirulence of the neuroattenuated wild-type strain: one each in the fusion protein, hemagglutinin-neuraminidase protein, and polymerase. The potential role of these amino acid changes in neurotropism, neurovirulence, and neuroattenuation is discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available