4.6 Article

The transcription-independent mitochondrial p53 program is a major contributor to nutlin-induced apoptosis in tumor cells

Journal

CELL CYCLE
Volume 8, Issue 11, Pages 1711-1719

Publisher

TAYLOR & FRANCIS INC
DOI: 10.4161/cc.8.11.8596

Keywords

nutlin; p53; MDM2; ubiquitination; mitochondria; apoptosis

Categories

Funding

  1. NCI NIH HHS [R01 CA060664-14A1, R01 CA060664] Funding Source: Medline
  2. NATIONAL CANCER INSTITUTE [R01CA060664] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Strategies to induce p53 activation in tumors that retain wild-type p53 are promising for cancer therapy. Nutlin is a potent and selective pharmacological MDM2 inhibitor that competitively binds to its p53-binding pocket, thereby leading to non-genotoxic p53 stabilization and activation of growth arrest and apoptosis pathways. Nutlin-induced apoptosis is thought to occur via p53's transcriptional program. Here we report that the transcription-independent mitochondrial p53 program plays an important role in Nutlin-induced p53-mediated tumor cell death. Aside from nuclear stabilization, Nutlin causes cytoplasmic p53 accumulation and translocation to mitochondria. Monoubiquitinated p53, originating from a distinct cytoplasmic pool, is the preferred p53 species that translocates to mitochondria in response to stress. Nutlin does not interfere with MDM2's ability to monoubiquitinate p53, due to the fact that MDM2-p53 complexes are only partially disrupted and that Nutlin-stabilized MDM2 retains its E3 ubiquitin ligase activity. Nutlin-induced mitochondrial p53 translocation is rapid and associated with cytochrome C release that precedes induction of p53 target genes. Specific inhibition of mitochondrial p53 translocation by Pifithrin mu reduces the apoptotic Nutlin response by 2.5-fold, underlining the significance of p53's mitochondrial program in Nutlin-induced apoptosis. Surprisingly, blocking the transcriptional arm of p53, either via a-Amanitin or the p53-specific transcriptional inhibitor Pifithrin a, not only fails to inhibit, but greatly potentiates Nutlin-induced apoptosis. In sum, the direct mitochondrial program is a major mechanism in Nutlin-induced p53-mediated apoptosis. Moreover, at least in some tumors the transcriptional p53 activities in net balance not only are dispensable for the apoptotic Nutlin response, but appear to actively block its therapeutic effect.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available