4.7 Article

A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells

Journal

JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM
Volume 88, Issue 11, Pages 5119-5126

Publisher

ENDOCRINE SOC
DOI: 10.1210/jc.2003-030222

Keywords

-

Funding

  1. NATIONAL INSTITUTE OF DIABETES AND DIGESTIVE AND KIDNEY DISEASES [R01DK040947] Funding Source: NIH RePORTER
  2. NIDDK NIH HHS [R01-DK-40947] Funding Source: Medline

Ask authors/readers for more resources

Human pituitary adenomas are the most common intracranial neoplasm. Typically monoclonal in origin, a somatic mutation is a prerequisite event in tumor development. To identify underlying pathogenetic mechanisms in tumor formation, we compared the difference in gene expression between normal human pituitary tissue and clinically nonfunctioning pituitary adenomas by cDNA-representational difference analysis. We cloned a cDNA, the expression of which was absent in these tumors, that represents a novel transcript from the previously described MEG3, a maternal imprinting gene with unknown function. It was expressed in normal human gonadotrophs, from which clinically nonfunctioning pituitary adenomas are derived. Additional investigation by Northern blot and RT-PCR demonstrated that this gene was also not expressed in functioning pituitary tumors as well as many human cancer cell lines. Moreover, ectopic expression of this gene inhibits growth in human cancer cells including HeLa, MCF-7, and H4. Genomic analysis revealed that MEG3 is located on chromosome 14q32.3, a site that has been predicted to contain a tumor suppressor gene involved in the pathogenesis of meningiomas. Taken together, our data suggest that MEG3 may represent a novel growth suppressor, which may play an important role in the development of human pituitary adenomas.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available