4.3 Review

Calcium signaling in closely related protozoan groups (Alveolata): Non-parasitic ciliates (Paramecium, Tetrahymena) vs. parasitic Apicomplexa (Plasmodium, Toxoplasma)

Journal

CELL CALCIUM
Volume 51, Issue 5, Pages 351-382

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ceca.2012.01.006

Keywords

Alveolata; Apicomplexa; Ca2+; Calcium; Ciliates; Paramecium; Plasmodium; Tetrahymena; Toxoplasma

Categories

Funding

  1. Deutsche Forschungsgemeinschaft
  2. CNPq
  3. CAPES
  4. FAPERJ

Ask authors/readers for more resources

The importance of Ca2+-signaling for many subcellular processes is well established in higher eukaryotes, whereas information about protozoa is restricted. Recent genome analyses have stimulated such work also with Alveolates, such as ciliates (Paramecium, Tetrahymena) and their pathogenic close relatives, the Apicomplexa (Plasmodium, Toxoplasma). Here we compare Ca2+ signaling in the two closely related groups. Acidic Ca2+ stores have been characterized in detail in Apicomplexa, but hardly in ciliates. Two-pore channels engaged in Ca2+-release from acidic stores in higher eukaryotes have not been stingently characterized in either group. Both groups are endowed with plasma membrane- and endoplasmic reticulum-type Ca2+-ATPases (PMCA, SERCA), respectively. Only recently was it possible to identify in Paramecium a number of homologs of ryanodine and inositol 1,3,4-trisphosphate receptors (RyR, IP3R) and to localize them to widely different organelles participating in vesicle trafficking. For Apicomplexa, physiological experiments suggest the presence of related channels although their identity remains elusive. In Paramecium, IP(3)Rs are constitutively active in the contractile vacuole complex; RyR-related channels in alveolar sacs are activated during exocytosis stimulation, whereas in the parasites the homologous structure (inner membrane complex) may no longer function as a Ca2+ store. Scrutinized comparison of the two closely related protozoan phyla may stimulate further work and elucidate adaptation to parasitic life. See also Conclusions section. (C) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available