4.5 Article Proceedings Paper

Alkaline subcritical-water treatment and alkaline heat treatment for the increase in biodegradability of newsprint waste

Journal

WATER SCIENCE AND TECHNOLOGY
Volume 48, Issue 4, Pages 77-84

Publisher

I W A PUBLISHING
DOI: 10.2166/wst.2003.0226

Keywords

alkaline pretreatment; cellulose degradation; heterocyclic compound; methane fermentation; newsprint biodegradability; phenolic derivative

Ask authors/readers for more resources

This work describes two alkaline semicontinuous processes for the conversion of refractory organic materials into biodegradable substances. Newsprint was used as a lignocellulosic waste. Methane conversion efficiencies and cellulose removals were investigated for the two following processes: alkaline subcritical-water treatment (ASWT) coupled with methane fermentation and alkaline heat treatment (newsprint heated with steam in an autoclave; AHT) coupled With methane fermentation with a neutral sulacritical-water treatment (NSWT) recycle. Results showed that for ASWT coupled with methane fermentation higher methane conversion efficiencies and higher cellulose removals were achieved as HRT increased. At HRT = 20 days, average CH4 conversion efficiency and average cellulose removal reached 26% and 44%, respectively. After a final. HRT of 40 days, average CH4 conversion efficiency and average cellulose removal reached 50% and 60%, respectively. On the other hand, for AHT coupled with methane fermentation, methane conversion efficiencies did not show a greater improvement using this pretreatment process. Average conversion reached 9% with an average cellulose removal of 20%. In order to improve the yield of the reactor, approximately one-third of the effluent was recycled using NSWT (150degreesC; neutral pH). Methane conversion efficiency of this process increased as more recycles were performed. For the fifth operation, the total average methane conversion efficiency was 44% with a total average cellulose removal of 55%.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available