4.4 Article

Isolation and in vitro propagation of human skeletal muscle progenitor cells from fetal muscle

Journal

CELL BIOLOGY INTERNATIONAL
Volume 37, Issue 2, Pages 191-196

Publisher

WILEY
DOI: 10.1002/cbin.10026

Keywords

basic fibroblast growth factor; epidermal growth factor; human fetal muscle; myosphere; skeletal muscle progenitor cells

Categories

Funding

  1. ALS Association
  2. NIH/NINDS [R21NS06104]
  3. University of Wisconsin Foundation

Ask authors/readers for more resources

Skeletal muscle progenitor cells (SMPCs) are considered one of the most valuable cells for cell-based therapy targeting skeletal muscle. However, an efficient protocol for isolating and maintaining human myogenic progenitors in vitro has not been fully established. In this study, we demonstrate that human myogenic progenitors can be expanded and proliferated from human fetal muscles. Human SMPCs were prepared from fetal hind limb muscles and induced to proliferate as free-floating spheres termed myospheres in the medium containing basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF). Both myogenic progenitors and myoblast populations from human fetal muscles were effectively propagated in myospheres and passaged by a mechanical chopping. After expanding these spheres in culture, we tested whether myogenic progenitor cells can differentiate into multinucleated myotubes. The myospheres were dissociated, plated down on coverslips and cultured in the medium for terminal differentiation. We could confirm that the plated cells formed well-developed, multinucleated myotubes. This culture method using myospheres is an effective protocol to isolate and maintain SMPCs from human fetal skeletal muscles in culture.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available