4.6 Article

Explosive boiling of water after pulsed IR laser heating

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 5, Issue 5, Pages 888-895

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b210609d

Keywords

-

Ask authors/readers for more resources

By focussing 1 J of 1064 nm Nd:YAG beam into 30 atmospheres of hydrogen we could Raman shift to produce a 10 ns, 300 mJ, 1.9 mum laser pulse. This pulse can directly heat water by more than 100 K ( average), during the laser pulse, inducing vaporisation. Vaporisation was studied using time-resolved shadowgraphy and Raman spectroscopy to obtain macro and molecular level information. The O-H stretching Raman bands of water are sensitive to temperature allowing us to measure the average temperatures during the boiling process. After the T-jump, explosive boiling occurred within 100 ns during which time the bulk temperature decreased, indicating that the vaporising water molecules deprived heat from their surroundings. Shadowgraphs confirmed the timescale for this phenomenon visually. After 10 mus, vaporised gas molecules condensed and formed droplets, which were observed by a morphology-dependent resonance (MDR) Raman.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available