4.8 Article

Agrobacterium-mediated root transformation is inhibited by mutation of an Arabidopsis cellulose synthase-like gene

Journal

PLANT PHYSIOLOGY
Volume 133, Issue 3, Pages 1000-1010

Publisher

AMER SOC PLANT BIOLOGISTS
DOI: 10.1104/pp.103.030726

Keywords

-

Categories

Ask authors/readers for more resources

Agrobacterium-mediated plant genetic transformation involves a complex interaction between the bacterium and the host plant. Relatively little is known about the role plant genes and proteins play in this process. We previously identified an Arabidopsis mutant, rat4, that is resistant to Agrobacterium transformation. We show here that rat4 contains a T-DNA insertion into the 3'-untranslated region of the cellulose synthase-like gene CSLA9. CSLA9 transcripts are greatly reduced in the rat4 mutant. Genetic complementation of rat4 with wild-type genomic copies of the CSLA9 gene restores both transformation competence and the wild-type level of CSLA9 transcripts. The CSLA9 promoter shows a distinct pattern of expression in Arabidopsis plants. In particular, the promoter is active in the elongation zone of roots, the root tissue that we previously showed is most susceptible to Agrobacterium-mediated transformation. Disruption of the CSLA9 gene in the rat4 mutant results in reduced numbers and rate of growth of lateral roots and reduced ability of the roots to bind A. tumefaciens cells under certain conditions. No major differences in the linkage structure of the non-cellulosic polysaccharides could be traced to the defective CSLA9 gene.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available