4.4 Article

Diameters of microtubules change during rotation of the lipotubuloids of Ornithogalum umbellatum stipule epidermis as a result of varying protofilament monomers sizes and distance between them

Journal

CELL BIOLOGY INTERNATIONAL
Volume 33, Issue 12, Pages 1245-1252

Publisher

WILEY
DOI: 10.1016/j.cellbi.2009.08.012

Keywords

Microtubule diameters; Protofilaments; EM observations; Lipotubuloids; Ornithogalum umbellatum

Categories

Funding

  1. Polish Network for Mechanisms of Cell Motility (Mobilitas. pl)

Ask authors/readers for more resources

Microtubules in lipotubuloids of the Ornithogalum umbellatum stipule epidermis cells change their diameters depending on the motion of the cytoplasmic domains rich in microtubules and lipid bodies. Microtubules fixed during rotary and progressive motion of the lipotubuloids composed of the same number of protofilaments fall into two populations e wide (43-58 nm) and narrow (24-39 nm) in size. Following blockage of the motion with 2,4-dinitrophenol (DNP), the range of this diversity is smaller, microtubules become a medium-sized population (34-48 nm). When DNP is removed and the motion reactivated, 2 populations of microtubules reappear. Analysis of the structure of the microtubule wall revealed that changes in the microtubule diameters resulted from varying distances between the adjacent protofilaments, and stretching and compression of tubulin subunits in the protofilaments. A supposition has been put forward that the changes in the sizes of O. umbellatum microtubule diameters: 1) are connected with the interactions between microtubules and actin microfilaments lying along these microtubules; 2) can be the driving force of the rotary motion of lipotubuloids. (C) 2009 Published by Elsevier Ltd on behalf of International Federation for Cell Biology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available