4.5 Article

Glutamate activates NF-kappa B through calpain in neurons

Journal

EUROPEAN JOURNAL OF NEUROSCIENCE
Volume 18, Issue 12, Pages 3305-3310

Publisher

WILEY
DOI: 10.1111/j.1460-9568.2003.03079.x

Keywords

calcium; gene transcription; mouse; neuron; N-methyl-D-aspartate

Categories

Ask authors/readers for more resources

Glutamate induces gene transcription in numerous physiological and pathological conditions. Among the glutamate-responsive transcription factors, NF-kappaB has been mainly implicated in neuronal survival and death. Recent data also suggest a role of NF-kappaB in neural development and memory formation. In non-neuronal cells, degradation of the inhibitor IkappaBalpha represents a key step in NF-kappaB activation. However, little is known of how glutamate activates NF-kappaB in neurons. To investigate the signalling cascade involved we used primary murine cerebellar granule cells. Glutamate induced a rapid reduction of IkappaBalpha levels and nuclear translocation of the NF-kappaB subunit p65. The glutamate-induced reduction of IkappaBalpha levels was blocked by the N-methyl-D-aspartate inhibitor MK801. Specific inhibitors of the proteasome, caspase 3, and the phosphoinositide 3-kinase had no effect on glutamate-induced IkappaBalpha degradation. However, inhibition of the glutamate-activated Ca2+-dependent protease calpain by calpeptin completely blocked IkappaBalpha degradation and reduced the nuclear translocation of p65. Calpeptin also partially blocked glutamate-induced cell death. Our data indicate that the Ca2+-dependent protease calpain is involved in the NF-kappaB activation in neurons in response to N-methyl-D-aspartate receptor occupancy by glutamate. NF-kappaB activation by calpain may mediate the long-term effects of glutamate on neuron survival or memory formation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available