4.8 Article

Sorption of copper by olive mill residues

Journal

WATER RESEARCH
Volume 37, Issue 20, Pages 4895-4903

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0043-1354(03)00414-7

Keywords

olive mill residues; adsorption; copper; kinetic; equilibrium; regeneration

Ask authors/readers for more resources

A study on olive mill residues (OMR) as copper adsorbing material is reported in this work. A rough characterization of this waste material has been performed, by microanalysis and SEM pictures. Sorption tests with suspended OMR evidenced copper removal from solution, of about 60% in the investigated experimental conditions. The COD release in solution was also monitored during biosorption. Considering that it was significant, OMR washings with water were performed before biosorption. In this case the COD release in solution was reduced to less than 600 mg/L after two washings, while the OMR metal sorption properties did not change. Regenerated residues by acid solutions gave a copper removal of about 40%, in the same experimental conditions of the first adsorption test: regeneration with EDTA at different concentrations suggested that it presents a damage of adsorption active sites. On the other hand, the use of HCl and CaCl2 led to completely regenerate the biosorbent material. Tests were also performed with a column filled with 80 g of OMR and the breakpoint was demonstrated to take place after that about I L solution was treated in the investigated experimental conditions. Regeneration tests permitted to demonstrate that a concentration factor of about 2 can be obtained in no-optimized conditions, highlighting the possibility of using OMR for the treatment of metal bearing effluents. The main advantage of the process would be the low cost biosorbing material, considering that it represents a waste in the olive oil production. (C) 2003 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available