4.5 Article

Emergence of neural integration in the head-direction system by visual supervision

Journal

NEUROSCIENCE
Volume 120, Issue 3, Pages 877-891

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0306-4522(03)00201-X

Keywords

learning; amplification; persistent; model; Hebb; attractor

Categories

Ask authors/readers for more resources

Head-direction (HD) cells in subcortical areas of the mammalian brain are tuned to a particular head direction in space; a population of such neurons forms a neural compass that may be relevant for spatial navigation. The development of neural circuits constituting the head-direction system is poorly understood. Inspired by electrophysiological experiments about the role of recurrent synaptic connections, we investigate a learning rule that teaches neurons to amplify feed-forward inputs. We simulate random head movements of a rat, during which neurons receive both visual and vestibular (head-velocity) inputs. Remarkably, as recurrent connections learn to amplify exclusively the visual inputs, a neural network emerges that performs spatio-temporal integration. That is, during head movements in darkness, neurons resemble HD cells by maintaining a fixed tuning to head direction. The proposed learning rule exhibits similarities with known forms of anti-Hebbian synaptic plasticity. We conclude that selective amplification could serve as a general principle for the synaptic development of multimodal feedback circuits in the brain. (C) 2003 IBRO. Published by Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available