4.5 Article

Dieldrin induces apoptosis by promoting caspase-3-dependent proteolytic cleavage of protein kinase C delta in dopaminergic cells: Relevance to oxidative stress and dopaminergic degeneration

Journal

NEUROSCIENCE
Volume 119, Issue 4, Pages 945-964

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0306-4522(03)00226-4

Keywords

neurodegeneration; oxidative stress; mitochondria; caspases; Parkinson's disease; environmental factors

Categories

Funding

  1. NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES [R01ES010586] Funding Source: NIH RePORTER
  2. NIEHS NIH HHS [ES10586] Funding Source: Medline

Ask authors/readers for more resources

We previously reported that dieldrin, one of the potential environmental risk factors for development of Parkinson's disease, induces apoptosis in dopaminergic cells by generating oxidative stress. Here, we demonstrate that the caspase-3-dependent proteolytic activation of protein kinase Cdelta (PKCdelta) mediates as well as regulates the dieldrin-induced apoptotic cascade in dopaminergic cells. Exposure of PC12 cells to dieldrin (100-300 muM) results in the rapid release of cytochrome C, followed by the activation of caspase-9 and caspase-3 in a time- and dose-dependent manner. The superoxide dismutase mimetic Mn(III)tetrakis(4-benzoic acid)porphyrin chloride significantly attenuates dieldrin-induced cytochrome C release, indicating that reactive oxygen species may contribute to the activation of pro-apoptotic factors. Interestingly, dieldrin proteolytically cleaves native PKCdelta into a 41 kDa catalytic subunit and a 38 kDa regulatory subunit to activate the kinase. The dieldrin-induced proteolytic cleavage of PKCdelta and induction of kinase activity are completely inhibited by pretreatment with 50-100 muM concentrations of the caspase inhibitors benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (Z-VAD-FMK) and benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethylketone (Z-DEVD-FMK), indicating that the proteolytic activation of PKCdelta is caspase-3-dependent. Additionally, Z-VAD-FMK, Z-DEVD-FMK or the PKCdelta specific inhibitor rottlerin almost completely block dieldrin-induced DNA fragmentation. Because dieldrin dramatically increases (40-80-fold) caspase-3 activity, we examined whether proteolytically activated PKCdelta amplifies caspase-3 via positive feedback activation. The PKC8 inhibitor rottlerin (3-20 muM) dose-dependently attenuates dieldrin-induced caspase-3 activity, suggesting positive feedback activation of caspase-3 by PKCdelta. Indeed, delivery of catalytically active recombinant PKCdelta via a protein delivery system significantly activates caspase-3 in PC12 cells. Finally, overexpression of the kinase-inactive PKCdelta(K376R) mutant in rat mesencephalic dopaminergic neuronal cells attenuates dieldrin-induced caspase-3 activity and DNA fragmentation, further confirming the pro-apoptotic function of PKCdelta in dopaminergic cells. Together, we conclude that caspase-3-dependent proteolytic activation of PKCdelta is a critical event in dieldrin-induced apoptotic cell death in dopaminergic cells. (C) 2003 IBRO. Published by Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available