4.7 Article Proceedings Paper

Extracellular invertase: key metabolic enzyme and PR protein

Journal

JOURNAL OF EXPERIMENTAL BOTANY
Volume 54, Issue 382, Pages 513-524

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/jxb/erg050

Keywords

extracellular invertase; MAP kinase; plant-pathogen interaction; phylohormones; salt stress; source/sink regulation; sugar sensing

Categories

Ask authors/readers for more resources

Extracellular invertase is the key enzyme of an apoplasmic phloem unloading pathway and catalyses the hydrolytic cleavage of the transport sugar sucrose released into the apoplast. This mechanism contributes to long-distance assimilate transport, provides the substrate to sustain heterotrophic growth and generates metabolic signals known to effect various processes of primary metabolism and defence responses. The essential function of extracellular invertase for supplying carbohydrates to sink organs was demonstrated by the finding that antisense repression of an anther-specific isoenzyme provides an efficient method for metabolic engineering of male sterility. The regulation of extracellular invertase by all classes of phytohormones indicates an essential link between the molecular mechanism of phytohormone action and primary metabolism. The up-regulation of extracellular invertase appears to be a common response to various biotic and abiotic stress-related stimuli such as pathogen infection and salt stress, in addition to specific stress-related reactions. Based on the observed coordinated regulation of source/sink relations and defence responses by sugars and stress-related stimuli, the identified activation of distinct subsets of MAP kinases provides a mechanism for signal integration and distribution within such complex networks. Sucrose derivatives not synthesized by higher plants, such as turanose, were shown to elicit distinctly different from metabolizable responses; sugars and are rather perceived as stress-related stimuli.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available