4.5 Article

Mother's voice buffers separation-induced receptor changes in the prefrontal cortex of Octodon degus

Journal

NEUROSCIENCE
Volume 119, Issue 2, Pages 433-441

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0306-4522(03)00123-4

Keywords

behavioral development; emotional communication; D1-receptors; 5HT1(A)-receptors; GABA(A)-receptors

Categories

Ask authors/readers for more resources

Although the potential vulnerability of the postnatally developing brain toward adverse environmental influences is generally recognized, relatively little is known about the basic mechanisms involved. The plasticity and adaptability of the postnatally developing brain in response to adverse emotional experiences was analyzed in the South American Octodon degus. Our study revealed that repeated brief separation from the parents and exposure to an unfamiliar environment induces an up-regulation of dopamine (D1) and 5-hydroxytrytamine (5HT1(A))-receptor density in the precentral medial, anterior cingulate, prelimbic and infralimbic cortices in female pups. No significant changes of gamma aminobutyric acid (GABA(A)) receptor density were found in deprived animals of both genders. The acoustic presence of the mother during parental separation suppressed the D1-receptor up-regulation as well as the 5-HT1(A)-receptor up-regulation, again only in the female pups. These results demonstrate that that early adverse emotional experience alters aminergic function within the prefrontal cortex in the female but not the male brain. The mother's voice, a powerful emotional signal, can protect the developing cortex from separation-induced receptor changes. (C) 2003 IBRO. Published by Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available