4.7 Article

Pressureless sintering and mechanical and biological properties of fluor-hydroxyapatite composites with zirconia

Journal

JOURNAL OF THE AMERICAN CERAMIC SOCIETY
Volume 86, Issue 12, Pages 2019-2026

Publisher

AMER CERAMIC SOC
DOI: 10.1111/j.1151-2916.2003.tb03602.x

Keywords

-

Ask authors/readers for more resources

Fluor-hydroxyapatite (FHA) fabricated by a reaction between fluorapatite (FA) and hydroxyapatite (HA) was mixed with ZrO2 to produce FHA-ZrO2 composites. When the relative amount of FA to HA increased, the decomposition of the composite was decreased gradually because of the formation of thermally stable FHA solid solutions. With such suppression of decomposition, the FHA-ZrO2 composites retained fully densified bodies. As a result, significant enhancements in mechanical properties, such as hardness, flexural strength, and fracture toughness, were achieved as the relative amount of FA to HA increased. The highest values in strength and toughness were 220 MPa and 2.5 MPa.m(1/2), respectively, with FHA-40 vol% ZrO2 composites. In vitro proliferation of osteoblast-like cells (MG63) on the composites showed behavior similar to that observed on pure HA and FHA. Alkaline phosphatase (ALP) activity of the growing cells (HOS) on the composites was slightly down-regulated compared with that on pure HA and FHA at prolonged periods.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available