4.6 Article

Switching the Regioselectivity of a Cyclohexanone Monooxygenase toward (+)-trans-Dihydrocarvone by Rational Protein Design

Journal

ACS CHEMICAL BIOLOGY
Volume 11, Issue 1, Pages 38-43

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acschembio.5b00723

Keywords

-

Funding

  1. Deutsche Bundesstiftung Umwelt [AZ 20013/231]

Ask authors/readers for more resources

The regioselectivity of the Baeyer-Villiger monooxygenase-catalyzed oxidation is governed mostly by electronic effects leading to the migration of the higher substituted residue. However, in some cases, substrate binding occurs in a way that the less substituted residue lies in an antiperiplanar orientation to the peroxy bond in the Criegee intermediate yielding in the formation of the abnormal lactone product. We are the first to demonstrate a complete switch in the regioselectivity of the BVMO from Arthrobacter sp. (CHMOArthro) as exemplified for (+)-trans-dihydrocarvone by redesigning the active site of the enzyme. In the designed triple mutant, the substrate binds in an inverted orientation leading to a ratio of 99:1 in favor of the normal lactone instead of exclusive formation of the abnormal lactone in case of the wild type enzyme. In order to validate our computational study, the beneficial mutations were successfully transferred to the CHMO from Acinetobacter sp. (CHMOAcineto), again yielding in a complete switch of regioselectivity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available