4.3 Article

Laboratory studies of the interaction of carbon monoxide with water ice

Journal

ASTROPHYSICS AND SPACE SCIENCE
Volume 285, Issue 3-4, Pages 633-659

Publisher

KLUWER ACADEMIC PUBL
DOI: 10.1023/A:1026144806831

Keywords

astrochemistry; dust; molecular processes

Ask authors/readers for more resources

The interaction of carbon monoxide (CO) with vapour-deposited water (H2O) ices has been studied using temperature programmed desorption (TPD) and Fourier transform reflection-absorption infrared spectroscopy (FT-RAIRS) over a range of astrophysically relevant temperatures. Such measurements have shown that CO desorption from amorphous H2O ices is a much more complex process than current astrochemical models suggest. Re-visiting previously reported laboratory experiments (Collings et al., 2003), a rate model has been constructed to explain, in a phenomenological manner, the desorption of CO over astronomically relevant timescales. The model presented here can be widely applied to a range of astronomical environments where depletion of CO from the gas phase is relevant. The model accounts for the two competing processes of CO desorption and migration, and also enables the entrapment of some of the CO in the ice matrix and its subsequent release as the water ice crystallises and then desorbs. The astronomical implications of this model are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available