4.8 Article

Electrolytic, TEM and Raman studies on the production of carbon nanotubes in molten NaCl

Journal

CARBON
Volume 41, Issue 6, Pages 1127-1141

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0008-6223(03)00020-4

Keywords

carbon nanotubes; intercalation; electron microscopy; Raman spectroscopy

Ask authors/readers for more resources

The production of carbon nanotubes (CNTs) by the electrolysis of molten NaCl was investigated by examining the effect of electrolysis duration, current density and voltage. It was found that as the electrolysis was run for longer periods the cathode eroded. changing the current density and consequently preventing nanotube production. The electrolysis was also inhibited by the anode effect and the formation of a sodium layer on the top of the electrolyte. The cell was modified to avoid these difficulties and then optimised under voltage control. Minimum and optimum voltages and current densities were found for CNT production. However, it was discovered that the percentage of nanotube produce still fell as the electrolysis progressed despite minimising the variation in the current density. The nanomaterial produced was studied by TEM. In particular. it was observed that half of the nanotubes were coated with amorphous carbon, suggesting a two-stage growth process. No link, though, was established between the growth conditions and the morphology of the nanotubes. Raman spectroscopy showed that the quality of the nanotubes was comparable to those produced by the CVD route. Titration was used to establish the uptake of sodium into the cathodes, providing evidence for the intercalation growth mechanism. (C) 2003 Published by Elsevier Science Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available