4.7 Article

Structure, ecology and physiology of root clusters - a review

Journal

PLANT AND SOIL
Volume 248, Issue 1-2, Pages 1-19

Publisher

SPRINGER
DOI: 10.1023/A:1022314613217

Keywords

auxin; cluster roots; proteoid roots; root function; root structure; soil bacteria; soil nutrients; soil water

Ask authors/readers for more resources

Hairy rootlets, aggregated in longitudinal rows to form distinct clusters, are a major part of the root system in some species. These root clusters are almost universal (1600 species) in the family Proteaceae (proteoid roots), with fewer species in another seven families. There may be 10-1000 rootlets per cm length of parent root in 2-7 rows. Proteoid roots may increase the surface area by over 140x and soil volume explored by 300x that per length of an equivalent non-proteoid root. This greatly enhances exudation of carboxylates, phenolics and water, solubilisation of mineral and organic nutrients and uptake of inorganic nutrients, amino acids and water per unit root mass. Root cluster production peaks at soil nutrient levels (P, N, Fe) suboptimal for growth of the rest of the root system, and may cease when shoot mass peaks. As with other root types, root cluster production is controlled by the interplay between external and internal nutrient levels, and mediated by auxin and other hormones to which the process is particularly sensitive. Proteoid roots are concentrated in the humus-rich surface soil horizons, by 800x in Banksia scrub-heath. Compared with an equal mass of the B horizon, the A(1) horizon has much higher levels of N, P, K and Ca in soils where species with proteoid root clusters are prominent, and the concentration of root clusters in that region ensures that uptake is optimal where supply is maximal. Both proteoid and non-proteoid root growth are promoted wherever the humus-rich layer is located in the soil profile, with 4x more proteoid roots per root length in Hakea laurina. Proteoid root production near the soil surface is favoured among hakeas, even in uniform soil, but to a lesser extent, while addition of dilute N or P solutions in split-root system studies promotes non-proteoid, but inhibits proteoid, root production. Local or seasonal applications of water to hakeas initiate non-proteoid, then proteoid, root production, while waterlogging inhibits non-proteoid, but promotes proteoid, root production near the soil surface. A chemical stimulus, probably of bacterial origin, may be associated with root cluster initiation, but most experiments have alternative interpretations. It is possible that the bacterial component of soil pockets rich in organic matter, rather than their nutrient component, could be responsible for the proliferation of proteoid roots there, but much more research on root cluster microbiology is needed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available