4.3 Article

Copper (II) ions affect Escherichia coli membrane vesicles' SH-groups and a disulfide-dithiol interchange between membrane proteins

Journal

CELL BIOCHEMISTRY AND BIOPHYSICS
Volume 51, Issue 1, Pages 45-50

Publisher

HUMANA PRESS INC
DOI: 10.1007/s12013-008-9014-7

Keywords

SH-groups; F0F1-ATPase; hydrogenases; Cu2+; fermentation; bioenergetics; Escherichia coli

Ask authors/readers for more resources

The SH-groups in Escherichia coli membrane vesicles, prepared from cells grown in fermentation conditions on glucose at slightly alkaline pH, have a role in the F0F1-ATPase operation. The changes in the number of these groups by ATP are observed under certain conditions. In this study, copper ions (Cu2+) in concentration of 0.1 mM were shown to increase the number of SH-groups in 1.5-to 1.6-fold independent from K+ ions, and the suppression of the increased level of SH-groups by ATP was determined for Cu2+ in the presence of K+. Moreover, the increase in the number of SH-groups by Cu2+ was absent as well as the inhibition in ATP-dependent increasing SH-groups number by Cu2+ lacked when vesicles were treated with N-ethylmaleimide (NEM), specific thiol-reagent. Such an effect was not observed with zinc (Zn2+), cobalt (Co2+), or Cu+ ions. The increased level of SH-groups was observed in the hycE or hyfR mutants with defects in hydrogenases 3 or 4, whereas the ATP-dependent increase in the number of these groups was determined in hycE not in hyfR mutants. Both changes in SH-groups number disappeared in the atp or hyc mutants deleted for the F0F1-ATPase or hydrogenase 3 (no activity of hydrogenase 4 was detected in the hyc mutant used). A direct effect of Cu2+ but not Cu+ on the F0F1-ATPase is suggested to lead to conformational changes or damaging consequences, increasing accessible SH-groups number and disturbing disulfide-dithiol interchange within a protein-protein complex, where this ATPase works with K+ uptake system or hydrogenase 4 (Hyd-4); breaks in disulfides are not ruled out.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available