4.4 Article

Megalin-deficiency causes high myopia, retinal pigment epithelium-macromelanosomes and abnormal development of the ciliary body in mice

Journal

CELL AND TISSUE RESEARCH
Volume 358, Issue 1, Pages 99-107

Publisher

SPRINGER
DOI: 10.1007/s00441-014-1919-4

Keywords

Megalin; Myopia; Non-pigmented ciliary body epithelium; Retinal pigment epithelium; Macromelanosomes

Categories

Funding

  1. University of Aarhus
  2. Danish Medical Research Council
  3. NOVO-Nordisk Foundation
  4. Lundbeck Foundation
  5. King Christian X Foundation
  6. VELUX Foundation
  7. Lundbeck Foundation [R140-2013-12901] Funding Source: researchfish
  8. Novo Nordisk Fonden [NNF14OC0011751] Funding Source: researchfish

Ask authors/readers for more resources

In man, mutations of the megalin-encoding gene causes the rare Donnai-Barrow/Facio-Oculo-Acoustico-Renal Syndrome, which is partially characterized by high-grade myopia. Previous studies of renal megalin function have established that megalin is crucial for conservation of renal filtered nutrients including vitamin A; however, the role of megalin in ocular physiology and development is presently unknown. Therefore, we investigate ocular megalin expression and the ocular phenotype of megalin-deficient mice. Topographical and subcellular localization of megalin as well as the ocular phenotype of megalin-deficient mice were examined with immunological techniques using light, confocal and electron microscopy. We identified megalin in the retinal pigment epithelium (RPE) and non-pigmented ciliary body epithelium (NPCBE) in normal mouse eyes. Immunocytochemical investigations furthermore showed that megalin localizes to vesicular structures in the RPE and NPCBE cells. Histological investigations of ocular mouse tissue also identified a severe myopia phenotype as well as enlarged RPE melanosomes and abnormal ciliary body development in the megalin-deficient mice. In conclusion, the complex ocular phenotype observed in the megalin-deficient mice suggests that megalin-mediated developmental abnormalities may contribute to the high myopia phenotype observed in the Donnai-Barrow Syndrome patients and, thus, that megalin harbors important roles in ocular development and physiology. Finally, our data show that megalin-deficient mice may provide a valuable model for future studies of megalin in ocular physiology and pathology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available