4.7 Article

Identification of resolvin D2 receptor mediating resolution of infections and organ protection

Journal

JOURNAL OF EXPERIMENTAL MEDICINE
Volume 212, Issue 8, Pages 1203-1217

Publisher

ROCKEFELLER UNIV PRESS
DOI: 10.1084/jem.20150225

Keywords

-

Funding

  1. National Institutes of Health [R01GM38765]
  2. Institut Merieux

Ask authors/readers for more resources

Endogenous mechanisms that orchestrate resolution of acute inflammation are essential in host defense and the return to homeostasis. Resolvin (Rv)D2 is a potent immunoresolvent biosynthesized during active resolution that stereoselectively stimulates resolution of acute inflammation. Here, using an unbiased G protein-coupled receptor-beta-arrestin-based screening and functional sensing systems, we identified a receptor for RvD2, namely GPR18, that is expressed on human leukocytes, including polymorphonuclear neutrophils (PMN), monocytes, and macrophages (M Phi). In human M Phi, RvD2-stimulated intracellular cyclic AMP was dependent on GPR18. RvD2-stimulated phagocytosis of Escherichia coli and apoptotic PMN (efferocytosis) were enhanced with GPR18 overexpression and significantly reduced by shRNA knockdown. Specific binding of RvD2 to recombinant GPR18 was confirmed using a synthetic H-3-labeled-RvD2. Scatchard analysis gave a K-d of similar to 10 nM consistent with RvD2 bioactive concentration range. In both E. coli and Staphylococcus aureus infections, RvD2 limited PMN infiltration, enhanced phagocyte clearance of bacteria, and accelerated resolution. These actions were lost in GPR18-deficient mice. During PMN-mediated second organ injury, RvD2's protective actions were also significantly diminished in GPR18-deficient mice. Together, these results provide evidence for a novel RvD2-GPR18 resolution axis that stimulates human and mouse phagocyte functions to control bacterial infections and promote organ protection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available