4.4 Article

Amount-dependent isotopic fractionation during compound-specific isotope analysis

Journal

RAPID COMMUNICATIONS IN MASS SPECTROMETRY
Volume 17, Issue 9, Pages 970-977

Publisher

JOHN WILEY & SONS LTD
DOI: 10.1002/rcm.1009

Keywords

-

Ask authors/readers for more resources

The performance of a gas chromatography-combustion-isotope ratio mass spectrometry system (GC-C-IRMS) with respect to the dependence of delta(13)C values on the amount of sample is presented. Particular attention is paid to the localization of the amount-dependent isotopic fractionation within the system. Injection experiments with varying amounts of gases (CO2, n-hexane, and toluene) revealed that neither the detector unit nor the combustion reactor, but rather the conditions in the split/splitless injector, contributed to this effect. Although optimization of injector parameters was performed and a reduction of this adverse effect from 3 to 1parts per thousand was achieved, it was not possible to eliminate isotopic fractionation completely. Consequently, additional injector parameters have to be considered and adjusted to achieve injection conditions free of fractionation. For routine analysis of the compound-specific delta(13)C analysis of different biomarkers in many environmental samples, perfect optimization may not always be reached. Therefore, in order to prevent systematic errors in the measured delta(13)C values due to different sample concentrations, it is suggested that correction for the remaining unknown amount-dependent fractionation can be made by means of co-analyzing standards of varying analyte concentrations and known delta(13)C values. Residual overall amountdependent isotope-fractionation can thus be corrected mathematically. Copyright (C) 2003 John Wiley Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available