4.7 Article

Biomechanical forces promote blood development through prostaglandin E2 and the cAMP-PKA signaling axis

Journal

JOURNAL OF EXPERIMENTAL MEDICINE
Volume 212, Issue 5, Pages 665-680

Publisher

ROCKEFELLER UNIV PRESS
DOI: 10.1084/jem.20142235

Keywords

-

Funding

  1. American Society of Hematology
  2. State of Texas Emerging Technology Fund
  3. National Institutes of Health
  4. Giovanni Armenise-Harvard Foundation

Ask authors/readers for more resources

Blood flow promotes emergence of definitive hematopoietic stem cells (HSCs) in the developing embryo, yet the signals generated by hemodynamic forces that influence hematopoietic potential remain poorly defined. Here we show that fluid shear stress endows long-term multilineage engraftment potential upon early hematopoietic tissues at embryonic day 9.5, an embryonic stage not previously described to harbor HSCs. Effects on hematopoiesis are mediated in part by a cascade downstream of wall shear stress that involves calcium efflux and stimulation of the prostaglandin E-2 (PGE(2))-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling axis. Blockade of the PGE(2)-cAMP- PKA pathway in the aorta-gonad-mesonephros (AGM) abolished enhancement in hematopoietic activity. Furthermore, Ncx1 heartbeat mutants, as well as static cultures of AGM, exhibit lower levels of expression of prostaglandin synthases and reduced phosphorylation of the cAMP response element-binding protein (CREB). Similar to flow-exposed cultures, transient treatment of AGM with the synthetic analogue 16,16-dimethyl-PGE(2) stimulates more robust engraftment of adult recipients and greater lymphoid reconstitution. These data provide one mechanism by which biomechanical forces induced by blood flow modulate hematopoietic potential.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available