4.4 Article

Dynamics of expression of ARID1A and ARID1B subunits in mouse embryos and in cells during the cell cycle

Journal

CELL AND TISSUE RESEARCH
Volume 345, Issue 1, Pages 137-148

Publisher

SPRINGER
DOI: 10.1007/s00441-011-1182-x

Keywords

ARID; Chromatin remodeling; Cell cycle; Developmental expression; BAF complex; Mouse (CD1)

Categories

Funding

  1. DGAPA-UNAM [IN220009-3]
  2. CONACyT [49114]

Ask authors/readers for more resources

The mammalian SWI/SNF chromatin remodeling complexes play essential roles in cell cycle control through the transcriptional regulation of cell-cycle-specific genes. These complexes depend on the energy of ATP hydrolysis provided by the BRG1 or BRM catalytic subunit. They contain seven or more noncatalytic subunits, some being constitutive components, with others having paralogs that assemble in a combinatory manner producing different SWI/SNF-related complexes with specific functions. ARID1A and ARID1B are mutually exclusive subunits of the BAF complex. The specific presence of these subunits in the complex has been demonstrated to determine whether SWI/SNF functions as a corepressor (ARID1A) or as a coactivator (ARID1B) of the cell cycle genes. Our aim has been to analyze the relevance of the ARID1 subunits in development. We have compared the patterns of expression of these two genes through various mouse embryonic stages. Arid1a is expressed widely and intensively, whereas Arid1b is poorly transcribed and expressed in selected regions. Moreover, ARID1A and ARID1B present different kinetics of expression in the cell cycle. ARID1A accumulates in G0 and is downregulated throughout the cell cycle phases but is completely eliminated during mitosis, whereas ARID1B is expressed at comparable levels at all phases, even during mitosis. These kinetics probably affect the incorporation patterns of the ARID1 proteins to the complex and hence modulate SWI/SNF activity during proliferation and arrest.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available