4.4 Article

A novel wide-field neuron with branches in the lamina of the Drosophila visual system expresses myoinhibitory peptide and may be associated with the clock

Journal

CELL AND TISSUE RESEARCH
Volume 343, Issue 2, Pages 357-369

Publisher

SPRINGER
DOI: 10.1007/s00441-010-1100-7

Keywords

Neuropeptide; Allatostatin B; Serotonin; Biological clock; Optic lobe; Insect brain; Drososphila melanogaster (Insecta)

Categories

Funding

  1. Swedish Research Council (VR)

Ask authors/readers for more resources

Although neuropeptides are widespread throughout the central nervous system of the fruifly Drosophila, no records exist of peptidergic neurons in the first synaptic region of the visual system, the lamina. Here, we describe a novel type of neuron that has wide-field tangential arborizations just distal to the lamina neuropil and that expresses myoinhibitory peptide (MIP). The cell bodies of these neurons, designated lateral MIP-immunoreactive optic lobe (LMIo) neurons, lie anteriorly at the base of the medulla of the optic lobe. The LMIo neurons also arborize in several layers of the medulla and in the dorso-lateral and lateral protocerebrum. Since the LMIo resemble LNv clock neurons, we have investigated the relationships between these two sets of neurons by combining MIP-immunolabeling with markers for two of the clock genes, viz., Cryptochrome and Timeless, or with antisera to two peptides expressed in clock neurons, viz., pigment-dispersing factor and ion transport peptide. LMIo neurons do not co-express any of these clock neuron markers. However, branches of LMIo and clock neurons overlap in several regions. Furthermore, the varicose lamina branches of LMIo neurons superimpose those of two large bilateral serotonergic neurons. The close apposition of the terminations of MIP- and serotonin-producing neurons distal to the lamina suggests that they have the same peripheral targets. Our data indicate that the LMIo neurons are not bona fide clock neurons, but they may be associated with the clock system and regulate signaling peripherally in the visual system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available