4.5 Article

How litter quality affects mass loss and N loss from decomposing Sphagnum

Journal

OIKOS
Volume 103, Issue 3, Pages 537-547

Publisher

BLACKWELL MUNKSGAARD
DOI: 10.1034/j.1600-0706.2003.12707.x

Keywords

-

Categories

Ask authors/readers for more resources

Nitrogen (N) deposition may affect litter decomposition and may thus have an impact on the rate of carbon (C) sequestration in Sphagnum peatlands. We present results from four separate experiments aimed at delineating the effects of litter N-enrichment, Sphagnum species, stem part of Sphagnum, and place of incubation on decomposition rate and N release. We measured mass loss and N loss from litterbags incubated at 10-15 cm in the field for one year. Mass loss was positively related to the N/C quotient of the litter, but depended strongly on the range in N/C quotients observed; only a distinct difference in N/C quotients affected mass loss. Although hummock species decayed at a slower rate than hollow species, the differences between the species became less pronounced for old stem parts and for N-enriched litter. Old stem parts decayed at a slower rate than young stem parts, except for S. papillosum. Neither position of incubation (low hummock or hollow), nor the inorganic N concentration of the incubation environment affected mass loss. N loss was mainly determined by, and positively related to, the N/C quotient of the litter; species and stem part had minor effects. Above a N/C quotient of about 0.015, net N loss was observed for all species. We conclude that decomposition of Sphagnum is stimulated by N deposition. As the latter also affects litter N concentration and thus N release, we think that positive feedbacks through changing litter quality should be taken into account when modelling the effects of N deposition on Sphagnum peatlands and C sequestration in these systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available