4.7 Article

Mobility and cycling of synaptic protein-containing vesicles in axonal growth cone filopodia

Journal

NATURE NEUROSCIENCE
Volume 6, Issue 12, Pages 1264-1269

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nn1149

Keywords

-

Categories

Ask authors/readers for more resources

The spatial distribution and coordination of vesicular dynamics within growth cones are poorly understood. It has long been thought that membranous organelles are concentrated in the central regions of growth cones and excluded from filopodia; this view has dramatically shaped conceptual models of the cellular mechanisms of axonal growth and presynaptic terminal formation. To begin to test these models, we studied membrane dynamics within axonal growth cones of living rat cortical neurons. We demonstrate that growth cone filopodia contain vesicles that transport synaptic vesicle proteins bidirectionally along filopodia and fuse with the filopodial surface in response to focal stimulation, allowing for both local secretion of vesicular contents and rapid changes in the plasma membrane composition of individual filopodia. Our results suggest a new model in which growth cone filopodia are actively involved in both emitting and responding to local signals related to axon growth and early synapse formation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available