4.8 Article

Multiple organ pathology, metabolic abnormalities and impaired homeostasis of reactive oxygen species in Epas1(-/-) mice

Journal

NATURE GENETICS
Volume 35, Issue 4, Pages 331-340

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/ng1266

Keywords

-

Funding

  1. NHLBI NIH HHS [K08 HL067154] Funding Source: Medline
  2. NATIONAL HEART, LUNG, AND BLOOD INSTITUTE [K08HL067154] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Hypoxia-inducible factor (HIF) transcription factors respond to multiple environmental stressors, including hypoxia and hypoglycemia. We report that mice lacking the HIF family member HIF-2alpha (encoded by Epas1) have a syndrome of multiple-organ pathology, biochemical abnormalities and altered gene expression patterns. Histological and ultrastructural analyses showed retinopathy, hepatic steatosis, cardiac hypertrophy, skeletal myopathy, hypocellular bone marrow, azoospermia and mitochondrial abnormalities in these mice. Serum and urine metabolite studies showed hypoglycemia, lactic acidosis, altered Krebs cycle function and dysregulated fatty acid oxidation. Biochemical assays showed enhanced generation of reactive oxygen species (ROS), whereas molecular analyses indicated reduced expression of genes encoding the primary antioxidant enzymes (AOEs). Transfection analyses showed that HIF-2alpha could efficiently transactivate the promoters of the primary AOEs. Prenatal or postnatal treatment of Epas1(-/-) mice with a superoxide dismutase (SOD) mimetic reversed several aspects of the null phenotype. We propose a rheostat role for HIF-2alpha that allows for the maintenance of ROS as well as mitochondrial homeostasis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available