4.4 Review

Endothelial and virgultar cell formations in the mammalian lymph node sinus: endothelial differentiation morphotypes characterized by a special kind of junction (complexus adhaerens)

Journal

CELL AND TISSUE RESEARCH
Volume 335, Issue 1, Pages 109-141

Publisher

SPRINGER
DOI: 10.1007/s00441-008-0700-y

Keywords

Sinus endothelial; virgultar cells (SEVCs); Desmoplakin; CD31; Thrombomodulin; LYVE-1; VEGFR-3

Categories

Funding

  1. Deutsche Forschungsgemeinschaft [MO 345/5-2]
  2. Deutsche Krebshilfe [10-2049-Fr1]
  3. German Ministry for Research and Technology

Ask authors/readers for more resources

The lymph node sinus are channel structures of unquestionable importance in immunology and pathology, specifically in the filtering of the lymph, the transport and processing of antigens, the adhesion and migration of immune cells, and the spread of metastatic cancer cells. Our knowledge of the cell and molecular biology of the sinus-forming cells is still limited, and the origin and biological nature of these cells have long been a matter of debate. Here, we review the relevant literature and present our own experimental results, in particular concerning molecular markers of intercellular junctions and cell differentiation. We show that both the monolayer cells lining the sinus walls and the intraluminal virgultar cell meshwork are indeed different morphotypes of the same basic endothelial cell character, as demonstrated by the presence of a distinct spectrum of general and lymphatic endothelial markers, and we therefore refer to these cells as sinus endothelial/virgultar cells (SEVCs). These cells are connected by unique adhering junctions, termed complexus adhaerentes, characterized by the transmembrane glycoprotein VE-cadherin, combined with the desmosomal plaque protein desmoplakin, several adherens junction plaque proteins including alpha- and beta-catenin and p120 catenin, and components of the tight junction ensemble, specifically claudin-5 and JAM-A, and the plaque protein ZO-1. We show that complexus adhaerentes are involved in the tight three-dimensional integration of the virgultar network of SEVC processes along extracellular guidance structures composed of paracrystalline collagen bundle stays. Overall, the SEVC system might be considered as a local and specific modification of the general lymphatic vasculature system. Finally, physiological and pathological alterations of the SEVC system will be presented, and the possible value of the molecular markers described in histological diagnoses of autochthonous lymph node tumors will be discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available