4.7 Article

Developmentally regulated expression of calponin isoforms and the effect of h2-calponin on cell proliferation

Journal

AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY
Volume 284, Issue 1, Pages C156-C167

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpcell.00233.2002

Keywords

smooth muscle development; cytokinesis; tropomyosin; actin cytoskeleton; monoclonal antibody; transfective expression

Ask authors/readers for more resources

h2-Calponin is found in both smooth muscle and nonmuscle cells, and its function remains to be established. Western blots with specific monoclonal antibodies detected significant expression of h2-calponin in the growing embryonic stomach and urinary bladder and the early pregnant uterus. Although the expression of h1-calponin is upregulated in the stomach and bladder during postnatal development, the expression of h2-calponin is decreased to low levels in quiescent smooth muscle cells. To investigate a hypothesis that h2-calponin regulates the function of the actin cytoskeleton during cytokinesis, a smooth muscle-originated cell line (SM3) lacking calponin was transfected to express either sense or antisense h2-calponin cDNA and the effects on the rates of cell proliferation were examined. Both stable and transient sense cDNA-transfected cells had a significantly decreased proliferation rate compared with the antisense cDNA-transfected or nontransfected cells. Immunofluorescence microscopy showed that the force-expressed h2-calponin was associated with actin-tropomyosin microfilaments. The number of binuclear cells was significantly greater in the sense cDNA-transfected culture, in which h2-calponin was concentrated in a nuclear ring structure formed by actin filaments. The results suggest that h2-calponin may regulate cytokinesis by inhibiting the activity of the actin cytoskeleton.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available