4.8 Article

Tachykinin-Expressing Neurons Control Male-Specific Aggressive Arousal in Drosophila

Journal

CELL
Volume 156, Issue 1-2, Pages 221-235

Publisher

CELL PRESS
DOI: 10.1016/j.cell.2013.11.045

Keywords

-

Funding

  1. NRSA postdoctoral fellowship
  2. NIH grant [R01-DA031389]
  3. Moore Foundation grant

Ask authors/readers for more resources

Males of most species are more aggressive than females, but the neural mechanisms underlying this dimorphism are not clear. Here, we identify a neuron and a gene that control the higher level of aggression characteristic of Drosophila melanogaster males. Males, but not females, contain a small cluster of FruM(+) neurons that express the neuropeptide tachykinin (Tk). Activation and silencing of these neurons increased and decreased, respectively, intermale aggression without affecting male-female courtship behavior. Mutations in both Tk and a candidate receptor, Takr86C, suppressed the effect of neuronal activation, whereas overexpression of Tk potentiated it. Tk neuron activation overcame reduced aggressiveness caused by eliminating a variety of sensory or contextual cues, suggesting that it promotes aggressive arousal or motivation. Tachykinin/Substance P has been implicated in aggression in mammals, including humans. Thus, the higher aggressiveness of Drosophila males reflects the sexually dimorphic expression of a neuropeptide that controls agonistic behaviors across phylogeny.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available