4.5 Review

Image reconstruction algorithms for electrical capacitance tomography

Journal

MEASUREMENT SCIENCE AND TECHNOLOGY
Volume 14, Issue 1, Pages R1-R13

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0957-0233/14/1/201

Keywords

electrical capacitance tomography; image reconstruction; iterative algorithm; inverse problem

Ask authors/readers for more resources

Electrical capacitance tomography (ECT) is used to image cross-sections of industrial processes containing dielectric material. This technique has been under development for more than a decade. The task of image reconstruction for ECT is to determine the permittivity distribution and hence material distribution over the cross-section from capacitance measurements. There are three principal difficulties with image reconstruction for ECT: (1) the relationship between the permittivity distribution and capacitance is non-linear and the electric field is distorted by the material present, the so-called 'soft-field' effect; (2) the number of independent measurements is limited, leading to an under-determined problem and (3) the inverse problem is ill posed and ill conditioned, making the solution sensitive to measurement errors and noise. Regularization methods are needed to treat this ill-posedness. This paper reviews existing image reconstruction algorithms for ECT, including linear back-projection, singular value decomposition, Tikhonov regularization, Newton-Raphson, iterative Tikhonov, the steepest descent method, Landweber iteration, the conjugate gradient method, algebraic reconstruction techniques, simultaneous iterative reconstruction techniques and model-based reconstruction. Some of these algorithms are examined by simulation and experiment for typical permittivity distributions. Future developments in image reconstruction for ECT are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available