4.8 Article

ATR Prohibits Replication Catastrophe by Preventing Global Exhaustion of RPA

Journal

CELL
Volume 155, Issue 5, Pages 1088-1103

Publisher

CELL PRESS
DOI: 10.1016/j.cell.2013.10.043

Keywords

-

Funding

  1. Novo Nordisk Foundation
  2. Danish Cancer Society
  3. European Commission
  4. Danish National Research Foundation
  5. EMBO
  6. Novo Nordisk Fonden [NNF12OC0002290] Funding Source: researchfish
  7. Novo Nordisk Foundation Center for Protein Research [PI Niels Mailand, PI Jiri Lukas] Funding Source: researchfish

Ask authors/readers for more resources

ATR, activated by replication stress, protects replication forks locally and suppresses origin firing globally. Here, we show that these functions of ATR are mechanistically coupled. Although initially stable, stalled forks in ATR-deficient cells undergo nucleus-wide breakage after unscheduled origin firing generates an excess of single-stranded DNA that exhausts the nuclear pool of RPA. Partial reduction of RPA accelerated fork breakage, and forced elevation of RPA was sufficient to delay such replication catastrophe'' even in the absence of ATR activity. Conversely, unscheduled origin firing induced breakage of stalled forks even in cells with active ATR. Thus, ATR-mediated suppression of dormant origins shields active forks against irreversible breakage via preventing exhaustion of nuclear RPA. This study elucidates how replicating genomes avoid destabilizing DNA damage. Because cancer cells commonly feature intrinsically high replication stress, this study also provides a molecular rationale for their hypersensitivity to ATR inhibitors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available