4.5 Article

Tensile damage and its effects on cortical bone

Journal

JOURNAL OF BIOMECHANICS
Volume 36, Issue 11, Pages 1683-1689

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/S0021-9290(03)00169-6

Keywords

plexiform bone; decalcified bone; shear failure; damage in type I collagen; organic matrix

Ask authors/readers for more resources

Plexiform bovine bone samples are repeatedly loaded in tension along their longitudinal axis. In order to induce damage in the bone tissue, bone samples are loaded past their yield point. Half of the bone samples from the damaged group were stored in saline to allow for viscoelastic recovery while the others were decalcified. Tensile tests were conducted on these samples to characterize the effects of damage on the mechanical behavior of the organic matrix (decalcified samples) as well as on bone tissue (stored in saline). The ultimate strain of the damaged decalcified bone is 29% higher compared to that of non-damaged decalcified (control) bone. The ultimate stresses as well as the elastic moduli are similar in both decalcified groups. This phenomenon is also observed in other collagenous tissue (tendon and ligament). This may suggest that damage in bone is caused by shear failure of the organic matrix; transverse separation of the collagen molecules or microfibrils from each other. In contrast, there is a trend towards lowered ultimate strains in damaged bone, which is soaked in saline, with respect to control bone samples (not damaged). The damaged bone tissue exhibits a bi-linear behavior in contrast to the mechanical behavior of non-damaged bone. The initial elastic modulus (below 55 MPa) and ultimate strength of damaged bone are similar to that in non-damaged bone. (C) 2003 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available