4.6 Article

Force modelling in shallow cuts with large negative rake angle and large nose radius tools - application to hard turning

Journal

Publisher

SPRINGER-VERLAG LONDON LTD
DOI: 10.1007/s00170-003-1550-0

Keywords

-

Ask authors/readers for more resources

In finish turning, the applied feedrate and depth of cut are generally very small. In some particular cases, such as the finishing of hardened steels, the feedrate and depth of cut are much smaller than tool nose radius. If a tool with a large tool nose radius and large negative rake angle is used in finish turning, the ploughing effect is pronounced and needs to be carefully addressed. Unfortunately, the ploughing effect has not yet been systematically considered in force modelling in shallow cuts with large negative rake angle and large nose radius tools in 3-D oblique cutting. In this study, in order to model the forces in such shallow cuts, first the chip formation forces are predicted by transforming the 3-D cutting geometry into an equivalent 2-D cutting geometry, then the ploughing effect mechanistic model is proposed to calculate the total 2-D cutting forces. Finally, the 3-D cutting forces are estimated by a geometric transformation. The proposed approach is verified in the turning of hardened 52100 steel, in which cutting conditions are typified as shallow cuts with negative rake angle and large nose radius tools. The workpiece material property of hardened 52100 steel is represented by the Johnson-Cook equation, which is determined from machining tests. The comparison between the experimental results and the model predictions is presented.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available