4.5 Article Proceedings Paper

Mechanical properties of intermetallic compounds associated with Pb-free solder joints using nanoindentation

Journal

JOURNAL OF ELECTRONIC MATERIALS
Volume 32, Issue 12, Pages 1375-1383

Publisher

SPRINGER
DOI: 10.1007/s11664-003-0104-4

Keywords

intermetallic compounds; Sn-Ag solder; modulus; hardness; Ag3Sn platelet; indentation creep; solder joints

Ask authors/readers for more resources

Mechanical properties of intermetallic compound (IMC) phases in Pb-free solder joints were obtained using nanoindentation testing (NIT). The elastic modulus and hardness were determined for IMC phases associated with insitu FeSn particle reinforced and mechanically added, Cu particle-reinforced, composite solder joints. The IMC layers that formed around Cu particle reinforcement and at the Cu substrate/solder matrix interface were probed with NIT. Moduli and hardness values obtained by NIT revealed were noticeably higher for Cu-rich Cu3Sn than those Of Cu6Sn5. The Ag3Sn platelets that formed during reflow were also examined for eutectic Sn-Ag solder column joints. The indentation modulus of Ag3Sn platelets was significantly lower than that of FeSn, SnCuNi, and CuSn IMCs. Indentation creep properties were assessed in localized microstructure regions of the as-cast, eutectic Sn-Ag solder. The stress exponent, n, associated with secondary creep differed widely depending on the microstructure feature probed by the indenter tip.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available