4.7 Article

Bioadsorption of cadmium ion by cell surface-engineered yeasts displaying metallothionein and hexa-His

Journal

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
Volume 63, Issue 2, Pages 182-186

Publisher

SPRINGER-VERLAG
DOI: 10.1007/s00253-003-1399-z

Keywords

-

Ask authors/readers for more resources

The Cd2+-chelating abilities of yeast metallothionein (YMT) and hexa-His displayed on the yeast-cell surface were compared. Display of YMT and hexa-His by alpha-agglutinin-based cell-surface engineering was confirmed by immunofluorescent labeling. Surface-engineered yeast cells with YMT and hexa-His fused in tandem showed superior cell-surface adsorption and recovery of Cd2+ under EDTA treatment on the cell surface than hexa-His-displaying cells. YMT was demonstrated to be more effective than hexa-His for the adsorption of Cd2+. Yeast cells displaying YMT and/or hexa-His exhibited a higher potential for the adsorption of Cd2+ than Escherichia coli cells displaying these molecules. In order to investigate the effect of the displayed YMT and hexa-His on sensitivity to toxic Cd2+, growth in Cd2+-containing liquid medium was monitored. Unlike hexa-His-displaying cells, cells displaying YMT and hexa-His fused in tandem induced resistance to Cd2+ through active and enhanced adsorption of toxic Cd2+. These results indicate that YMT-displaying yeast cells are a unique bioadsorbent with a functional chelating ability superior to that of E. coli.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available