3.8 Article

Parametrization strategy for the MoIFESD concept: Quantitative surface representation of local hydrophobicity

Ask authors/readers for more resources

We derive a new model for the established concept of the molecular free energy surface density, (MoIFESD) yielding a more rigorous representation of local surface contributions to the overall hydrophobicity of a molecule. The model parametrization makes efficient use of both local and global information about solvation thermodynamics, as formulated earlier for the problem of predicting free energies of hydration. The free energy of transfer is separated into an interaction contribution and a term related to the cavity formation. Interaction and cavity components are obtained from the statistical three-dimensional (3D) free energy density and a linear combination of surface and volume terms, respectively. An appropriate molecular interaction field generated by the program Grid is used as an approximate representation of the interaction part of the 3D free energy density. We further compress the 3D density by means of a linear combination of localized surface functions allowing for the derivation of local hydrophobic contributions in the form of a free energy surface density. For a set of 400 compounds our model yields significant correlation (R-2 = 0.95, sigma = 0.57) between experimental and calculated log P values. The final model is applied to establish a correlation between partial free energies of transfer for a series of sucrose derivatives and their relative sweetness, as studied earlier in the group of the authors. We find considerable improvement regarding the rms error of the regression thus validating the presented approach.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available