4.8 Article

A Minimal Midzone Protein Module Controls Formation and Length of Antiparallel Microtubule Overlaps

Journal

CELL
Volume 142, Issue 3, Pages 420-432

Publisher

CELL PRESS
DOI: 10.1016/j.cell.2010.06.033

Keywords

-

Funding

  1. DFG
  2. HFSPO
  3. European Commission
  4. Swiss National Science Foundation

Ask authors/readers for more resources

During cell division, microtubules are arranged in a large bipolar structure, the mitotic spindle, to segregate the duplicated chromosomes. Antiparallel microtubule overlaps in the spindle center are essential for establishing bipolarity and maintaining spindle stability throughout mitosis. In anaphase, this antiparallel microtubule array is tightly bundled forming the midzone, which serves as a hub for the recruitment of proteins essential for late mitotic events. The molecular mechanism of midzone formation and the control of its size are not understood. Using an in vitro reconstitution approach, we show here that PRC1 autonomously bundles antiparallel microtubules and recruits Xklp1, a kinesin-4, selectively to overlapping antiparallel microtubules. The processive motor Xklp1 controls overlap size by overlap length-dependent microtubule growth inhibition. Our results mechanistically explain how the two conserved, essential midzone proteins PRC1 and Xklp1 cooperate to constitute a minimal protein module capable of dynamically organizing the core structure of the central anaphase spindle.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available