3.8 Review

Renal and vascular oxidative stress and salt-sensitivity of arterial pressure

Journal

ACTA PHYSIOLOGICA SCANDINAVICA
Volume 179, Issue 3, Pages 243-250

Publisher

WILEY
DOI: 10.1046/j.0001-6772.2003.01204.x

Keywords

mean arterial pressure; renal damage; superoxide; superoxide dismutase

Categories

Funding

  1. NHLBI NIH HHS [HL-51971] Funding Source: Medline
  2. NATIONAL HEART, LUNG, AND BLOOD INSTITUTE [P01HL051971] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Oxidative stress occurs in a tissue or in the whole body when the total oxidant production exceeds the antioxidant capacity. Recent studies in human essential hypertension indicate that free radical production is increased and antioxidant levels are decreased, and more than one-half of these hypertensives have a salt-sensitive type of hypertension with progressive renal damage. Increased oxidative stress may also play a critical role in animal models of salt-sensitive hypertension. The stroke-prone spontaneously hypertensive rats (SHRSP) exhibits salt-sensitivity, vascular release of superoxide is increased, and total plasma antioxidant capacity is decreased. The superoxide release in the SHRSP rats inactivates nitric oxide, and superoxide dismutase (SOD) administration returns the bioactive nitric oxide levels to normal. The deoxycorticosterone acetate (DOCA)-salt hypertensive rat is salt-sensitive, aortic superoxide production is increased, and renal inflammation is significant. Treatment of the DOCA-salt rats with apocynin, an NADPH oxidase inhibitor, decreased aortic superoxide production and decreased arterial pressure. The Dahl salt-sensitive (S) rat has increased mesenteric microvascular and renal superoxide production and increased plasma levels of H2O2. The renal protein expression of SOD is decreased in the kidney of Dahl S rats, and long-term administration of Tempol, a superoxide mimetic, significantly decreased arterial pressure and renal damage. In conclusion, both human hypertension and experimental models of salt-sensitive hypertension have increased superoxide release, decreased antioxidant capacity and elevated renal damage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available