4.6 Article

Inhibition of the catalytic activity of rhodanese by S-nitrosylation using nitric oxide donors

Journal

INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY
Volume 35, Issue 12, Pages 1645-1657

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S1357-2725(03)00005-0

Keywords

inhibition; nitric oxide; rhodanese; S-nitrosothiols; S-nitrosylation

Ask authors/readers for more resources

Rhodanese (EC 2.8.1.1.) from bovine liver contains four reduced cysteine groups. The -SH group of cysteine 247, located in a rhodanese active centre, transfers sulfane sulfur in a form of hydrosulfide (-S-SH) from appropriate donors to nucleophilic acceptors. We aimed to discover whether S-nitrosylation of critical cysteine groups in rhodanese can inhibit activity of the enzyme by covalent modification of -SH groups. The inhibition of rhodanese activity was studied with the use of a number of nitric oxide (NO) donors. We have successfully confirmed using several methods that the inhibition of rhodanese activity is a result of the formation of stable S-nitrosorhodanese. Low molecular weight NO donors, such as S-nitroso-N-acetylpenicillamine (SNAP) and S-nitrosoglutathione (GSNO), inactivate rhodanese and are much more effective in this regard (100% inhibition at 2.5 mM) than such known inhibitors of this enzyme, as N-ethylmaleimide (NEM) (25 mM < 50%) or sulfates(IV) (90% inhibition at 5 mM). On the other hand, sodium nitroprusside (SNP) and nitrites inhibit rhodanese activity only in the presence of thiols, which suggests that S-nitrosothiols (RSNO) also have to participate in this reaction in this case. A demonstration that rhodanese activity can be inhibited as a result of S-nitrosylation suggests the possible mechanism by which nitric oxide may regulate sulfane sulfur transport to different acceptors. (C) 2003 Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available