4.7 Article

Gross nitrogen mineralization-, immobilization-, and nitrification rates as a function of soil C/N ratio and microbial activity

Journal

SOIL BIOLOGY & BIOCHEMISTRY
Volume 35, Issue 1, Pages 143-154

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0038-0717(02)00248-1

Keywords

nitrogen; ammonium; nitrate; ATP; isotope pool dilution; forest; rewetting

Categories

Ask authors/readers for more resources

A laboratory experiment was designed to challenge the idea that the ON ratio of forest soils may control gross N immobilization, mineralization, and nitrification rates. Soils were collected from three deciduous forests sites varying in C/N ratio between 15 and 27. They were air-dried and rewetted to induce a burst of microbial activity. The N transformation rates were calculated from an isotope dilution and enrichment procedure, in which (NH4Cl)-N-15 or (NaNO3)-N-15 was repeatedly added to the soils during 7 days of incubation. The experiments suggested that differences in gross nitrogen immobilization and mineralization rates between the soils were more related to the respiration rate and ATP content than to the C/N ratio. Peaks of respiration and ATP content were followed by high rates of mineralization and immobilization, with 1-2 days of delay. The gross immobilization of NH4+ was dependent on the gross mineralization and one to two orders of magnitude larger than the gross NO3- immobilization. The gross nitrification rates were negatively related to the ATP content and the C/N ratio and greatly exceeding the net nitrification rates. Taken together, the observations suggest that leaching of nitrate from forest soils may be largely dependent on the density and activity of the microbial community. (C) 2003 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available