4.3 Article Proceedings Paper

Automated prediction of CASP-5 structures using the Robetta server

Journal

PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS
Volume 53, Issue -, Pages 524-533

Publisher

WILEY
DOI: 10.1002/prot.10529

Keywords

automated protein structure prediction server; CASP; CAFASP; rosetta; fragment insertion; fragment assembly; ab initio modeling; de novo modeling; template-based modeling; domain parsing; homology modeling; comparative modeling; sequence alignment

Ask authors/readers for more resources

Robetta is a fully automated protein structure prediction server that uses the Rosetta fragment-insertion method. It combines template-based and de novo structure prediction methods in an attempt to produce high quality models that cover every residue of a submitted sequence. The first step in the procedure is the automatic detection of the locations of domains and selection of the appropriate modeling protocol for each domain. For domains matched to a homolog with an experimentally characterized structure by PSI-BLAST or Pcons2, Robetta uses a new alignment method, called K*Sync, to align the query sequence onto the parent structure. It then models the variable regions by allowing them to explore conformational space with fragments in fashion similar to the de novo protocol, but in the context of the template. When no structural homolog is available, domains are modeled with the Rosetta de novo protocol, which allows the full length of the domain to explore conformational space via fragment-insertion, producing a large decoy ensemble from which the final models are selected. The Robetta server produced quite reasonable predictions for targets in the recent CASP-5 and CAFASP-3 experiments, some of which were at the level of the best human predictions. (C) 2003 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available