4.7 Article Proceedings Paper

Intensive field phenotyping of maize (Zea mays L.) root crowns identifies phenes and phene integration associated with plant growth and nitrogen acquisition

Journal

JOURNAL OF EXPERIMENTAL BOTANY
Volume 66, Issue 18, Pages 5493-5505

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/jxb/erv241

Keywords

Capture; corn; interaction; root system architecture; RSA; soil; synergism; trait; uptake

Categories

Funding

  1. Howard G. Buffett Foundation
  2. National Science Foundation/Basic Research to Enhance Agricultural Development [4184-UM-NSF-5380]
  3. Agriculture and Food Research Initiative of the USDA National Institute of Food and Agriculture [2014-67013-2157]

Ask authors/readers for more resources

Root phenes were phenotyped on all whorls of field-grown maize for the first time, and their integration could explain up to 70% of shoot mass variation in low nitrogen soils.Root architecture is an important regulator of nitrogen (N) acquisition. Existing methods to phenotype the root architecture of cereal crops are generally limited to seedlings or to the outer roots of mature root crowns. The functional integration of root phenes is poorly understood. In this study, intensive phenotyping of mature root crowns of maize was conducted to discover phenes and phene modules related to N acquisition. Twelve maize genotypes were grown under replete and deficient N regimes in the field in South Africa and eight in the USA. An image was captured for every whorl of nodal roots in each crown. Custom software was used to measure root phenes including nodal occupancy, angle, diameter, distance to branching, lateral branching, and lateral length. Variation existed for all root phenes within maize root crowns. Size-related phenes such as diameter and number were substantially influenced by nodal position, while angle, lateral density, and distance to branching were not. Greater distance to branching, the length from the shoot to the emergence of laterals, is proposed to be a novel phene state that minimizes placing roots in already explored soil. Root phenes from both older and younger whorls of nodal roots contributed to variation in shoot mass and N uptake. The additive integration of root phenes accounted for 70% of the variation observed in shoot mass in low N soil. These results demonstrate the utility of intensive phenotyping of mature root systems, as well as the importance of phene integration in soil resource acquisition.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available