4.5 Article

Modelling and measuring the thermal behaviour of the molten pool in closed-loop controlled laser-based additive manufacturing

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1243/095440503321628125

Keywords

solid freeform fabrication; laser deposition; finite element modelling

Ask authors/readers for more resources

Laser-based additive manufacturing (LBAM) is a promising manufacturing technology that can be widely applied in solid freeform, fabrication (SFF), component recovery and regeneration, and surface modification. The thermal behaviour of the molten pool is one of the critical factors that influences laser deposition indices such as geometrical accuracy, material properties and residual stresses. In this paper, a three-dimensional finite element model is developed using ANSYS to simulate the thermal behaviour of the molten pool in building a single-bead wall via a closed-loop controlled LBAM process in which the laser power is controlled to keep the width of the molten pool constant. The temperature distribution, the geometrical feature of the molten pool and the cooling rate under different process conditions are investigated. To verify the simulation results, the thermal behaviour of the molten pool is measured by a coaxially installed infrared camera in experimental investigations of a closed-loop controlled LBAM process. Results from finite element thermal analysis provide guidance for the process parameter selection in LBAM, and develop a base for further residual stress analysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available