4.5 Review

A paradigm for functional tissue engineering of articular cartilage via applied physiologic deformational loading

Journal

ANNALS OF BIOMEDICAL ENGINEERING
Volume 32, Issue 1, Pages 35-49

Publisher

SPRINGER
DOI: 10.1023/B:ABME.0000007789.99565.42

Keywords

articular cartilage; chondrocyte; functional tissue engineering; osteochondral constructs; cartilage repair

Funding

  1. NATIONAL INSTITUTE OF ARTHRITIS AND MUSCULOSKELETAL AND SKIN DISEASES [R01AR046568, R01AR046532] Funding Source: NIH RePORTER
  2. NIAMS NIH HHS [AR46532, R01 AR046532-05, R01 AR046532, AR46568] Funding Source: Medline

Ask authors/readers for more resources

Deformational loading represents a primary component of the chondrocyte physical environment in vivo. This review summarizes our experience with physiologic deformational loading of chondrocyte-seeded agarose hydrogels to promote development of cartilage constructs having mechanical properties matching that of the parent calf tissue, which has a Young's modulus E-Y = 277 kPa and unconfined dynamic modulus at I Hz G* = 7 MPa. Over an 8-week culture period, cartilage-like properties have been achieved for 60 x 10(6) cells/ml seeding density agarose constructs, with E-Y = 186 kPa, G* = 1.64 MPa. For these constructs, the GAG content reached 1.74% ww and collagen content 2.64% ww compared to 2.4% ww and 21.5% ww for the parent tissue, respectively. Issues regarding the deformational loading protocol, cell-seeding density, nutrient supply, growth factor addition, and construct mechanical characterization are discussed. In anticipation of cartilage repair studies, we also describe early efforts to engineer cylindrical and anatomically shaped bilayered constructs of agarose hydrogel and bone (i.e., osteochondral constructs). The presence of a bony substrate may facilitate integration upon implantation. These efforts will provide an underlying framework from which a functional tissue-engineering approach, as described by Butler and coworkers (2000), may be applied to general cell-scaffold systems adopted for cartilage tissue engineering.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available