4.5 Article

Evolution of vertebroplasty: A biomechanical perspective

Journal

ANNALS OF BIOMEDICAL ENGINEERING
Volume 32, Issue 1, Pages 77-91

Publisher

SPRINGER
DOI: 10.1023/B:ABME.0000007793.49771.6d

Keywords

spine biomechanics; finite element modeling; fracture repair; prophylactic vertebroplasty; vertebral reinforcement; bone cement

Ask authors/readers for more resources

This paper is a collection of computational, finite element studies on vertebroplasty performed in our laboratory, which attempts to provide new biomechanical evidence and a fresh perspective into how the procedure can be implemented more effectively toward the goal of preventing osteoporosis-related fractures. The percutaneous application of a bone cement to vertebral defects associated with osteoporotic vertebral compression fracture has proven clinical successful in alleviating back pain. When the biomechanical efficacy of the procedure was examined, however, vertebroplasty was found to be limited in its ability to provide sufficient augmentation to prevent further fractures without risking complications arising from cement extravasations. The procedure may instead be more efficient biomechanically as a prophylactic treatment, to mechanically reinforce osteoporotic vertebrae at risk for fracture. Patient selection for such intervention may be reliably achieved with the more accurate fracture risk assessments based on vertebral strength, predicted using geometrically detailed, specimen-specific finite element models, rather than on bone density alone. Optimal cement volume, placement, and material properties were also recommended. The future of vertebroplasty involving biodegradable augmentation material laced with osteogenic agents that upon release will stimulate new bone growth and increase bone mass was proposed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available