4.7 Article Proceedings Paper

Photo-Fenton degradation of wastewater containing organic compounds in solar reactors

Journal

SEPARATION AND PURIFICATION TECHNOLOGY
Volume 34, Issue 1-3, Pages 51-57

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S1383-5866(03)00174-6

Keywords

solar reactors; photo-Fenton process; phenol; wastewater treatment; photodegradation

Ask authors/readers for more resources

In this work, the photo-Fenton oxidation of phenol in aqueous solutions has been investigated using Fe2+, H2O2 and UV-visible light (sunlight). Laboratory-scale experiments were carried out using solar reactors of two different configurations: (1) a concentrating parabolic trough reactor (PTR) and (2) a non-concentrating thin-film reactor. Global solar irradiance was measured during the experiments: Additional laboratory experiments were carried out in an annular photochemical reactor using an artificial light source, at the same experimental conditions. The results indicate that the photo-Fenton process using solar irradiation is an effective treatment for industrial wastewater containing phenol. At low contaminant concentration (TOC0 = 100 ppm), more than 90% of the total organic carbon content of the initial phenol solution could be converted to inorganic carbon within about 3 h of irradiation, using artificial light or sunlight (even on cloudy days), in reactors of different geometry. At moderate or higher phenol concentrations (TOC0 = 550 or 1000 ppm), the results indicate satisfactory TOC removal (45-55%) at reasonable degradation rates. Experiments under different insolation conditions suggest a direct linear dependence of the organic carbon removal on the accumulated sunlight energy reaching the system. Solar light can be used either as a complementary or alternative source of photons to the process. (C) 2003 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available